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A brief overview of DA @CERFACS

Improve DA methods for Earth system and environmental
applications in modelling and prediction mode

o Data assimilation algorithms: variational, ensemble-based and
hybrid strategies
o Description of covariance matrices model and observations

o Strategies for the assimilation of heterogeneous and innovative
data
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Data assimilation algorithms:

variational, ensemble-based and hybrid strategies

Ensemble-variational 4DEnVar for air quality forecasts (E. Emili@CERFACS) to deal with
moderate resolutions (10-20 km over Europe) and multi-variate dimension (up to 100

chemical species)
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- - Data assimilation algorithms:
. . variational, ensemble-based and hybrid strategies

Parametric reduced-order modeling for atmospheric boundary layer flows for pollutant
dispersion and micrometeorology (M. Rochoux@CERFACS)
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. Description of covariance matrices model and observations

Represent the covariances of remote sensing observation errors for ocean data
assimilation dynamics with a diffusion operator (A. Weaver@CERFACS)

Simulated satellite track from SWOT Gaps due to land, missing data and quality control
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. Description of covariance matrices model and observations

Multifidelity estimation of the background covariance matrix for ensemble
variational DA with a quasi-geostrophic model (P. Mycek@CERFACS)
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= Strategies for the assimilation of heterogeneous
. . and innovative data

Assimilation of remote sensing data for flood forecasting complementary with in-situ
data, dealing with non-gaussianity in ensemble based algorithms (S. Ricci@QCERFACS)
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Challenges in Data

ASSIMIiation
o Sensitivity analysis for control vector definition

o Estimation of model error
o Optimization for large dimension, non-linear models in variational algorithms

o Deal with large dimension (methods for dimension reduction)
o Deal with expensive solvers (methods for surrogate models)
o Deal with non-linear solvers (preconditioning),

o Modelling and/or stochastic estimation for error covariances
o Enhance DA methods with UQ and Machine/Deep Learning techniques

o Deal with non-gaussian errors for model state and observations (advanced algo,
anamorphosis, ...)

o Assimilation of novel forms, heterogeneous, (i.e. remote sensing) data with
associated obs. operators
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Challenges in Data

Assimiiation
Working group in Data Assimilation

o As of today, ONERA, EDF, IFPEN, CEA are part of the GT-DA

o ONERA shared some interest on these topics, especially on data inversion,
bayesian inversion and optimization, machine learning for DA.

How to get started with the GT

o Suggest internships in collaboration between GIS-LARTISSTE members
o Elaborate on existing applications as much as possible

o Share interest on your won applications

o Share knowledge and code on existing (on going) work
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