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o Usually, a first climate awareness (and worriness) : extreme events! (eg, last summer)
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Why studyi

o Not to know what to wear © (matter of forecasting)

o Usually, a first climate awareness (and worriness) : extreme events! (eg, last summer)

o More generally, many human activities/interests (agriculture, energy, water resources, etc. )

are strongly related to weather and climate

1
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1 (30% ofthe world economic activities are affected by meteo conditions, source: IPCC)
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i = From ~60’s: “Global Climate Models” (GCM) to model/understand past/present/future

| = From 1988: “Intergovernmental Panel on Climate Change” (IPCC, last report in 2021/22)

» Assess knowledge on CC, its causes, potential 1mpacts and response options




. Usually, a first climate awareness (and worriness) : extreme events! (eg, last summer)

o More generally, many human activities/interests (agriculture, energy, water resources, etc.)

are strongly related to weather and climate
(30% of the world economic activities are affected by meteo conditions, source: IPCC)

1
[
I

| = Climate changes (both in extremes and more “regular” events) can then have major
|  consequences and impacts (food security, damages, biodiversity, etc.)

% »‘ = From ~60’s: “Global Climate Models” (GCM) to model/understand past/present/future

| = From 1988: “Intergovernmental Panel on Climate Change” (IPCC, last report in 2021/22)
» Assess knowledge on CC, its causes, potential impacts and response options

{ < Asin any (physical and statistical) modelling: Uncertainties are present
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From scenarios to adaptations/mitigations
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From scenarios to adaptations/mitigations

Source: IPSL
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From scenarios to adaptations/mitigations

(a) Global surface temperature change relative to 1850-1900
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From scenarios to adaptations/mitigations

GCM simulations
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From scenarios to adaptations/mitigations

GCM simulations
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Not always enough!
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From scenarios to adaptations/mitigations

GCM simulations
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From scenarios to adaptations/mitigations

Many impact models

Health Impacts

Weather-related Mortality

GHG Infectious Diseases
emissions Air Quality-Respiratory llinesses
Agriculture Impacts
Climate . Crop yields
S Climate Changes Iirigation demands

Forest Impacts

Change in forest composition
Shift geogmﬁhic range of forests
Forest Health and Productivity
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Regional

scenario )
M Precipitation

-% Sea Level Rise

Water Resource Impacts

Changes in water supply
Water quality
Increased Competition for water

Impacts on Coastal Areas
Erosion of beaches

Inundate coastal lands

Costs to defend coastal communities

Species and Natural Areas

- “~ Shift in ecological zones
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responses

United States Environmental Protection Agency




From scenarios to adaptations/mitigations
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Not that easy: some (!) uncertainties
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The cascade of uncertainty
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The cascade of uncertainty

Regional
scenario

Adaptation
responses

Not that easy: some (!) uncertainties

Modelling,
evaluation,
Downscaling/BC

€——— The envelope of uncertainty ———>
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Uncertainties in “simulations” and in “references”

e Global (GCM) or Regional (RCM) Climate Models

'Z:Z:;ctzl » Based on physical equations, computer code(s) simulating the main
simulations characteristics (pressure, temp., prec., etc.) of the Earth system

> Structure of the model / parametrizations / scale



Physical
climate
simulations

Statistical
climate
simulations

e Statistical downscaling/Bias correction i
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Uncertainties in “simulations” and in “references

[ Global (GCM) or Regional (RCM) Climate Models

» Based on physical equations, computer code(s) simulating the main
characteristics (pressure, temp., prec., etc.) of the Earth system
> Structure of the model / parametrizations / scale

> Links GCM/RCM simulations to reference data i
> Uncert. sources: Stat./ML approach (linear, non-linear, § §
distribution assumptions), choice of the predictors, references
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» Uncert. sources: precision measurement
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» Based on “data assimilation” approach
» Uncert. sources: GCM used + observation uncertainties
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e Reanalyses

» Based on “data assimilation” approach
» Uncert. sources: GCM used + observation uncertainties

¢ Note: Climate # Meteo !! (even though, same variables)
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Meteorology # Climate

e Time: ~1 week vs. 100 years

But...

“Climate is what you expect,
weather is what you get.”

E. Lorenz
(1917-2008)



Meteorology # Climate
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Meteorology # Climate
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e Statistics:
1 realization vs. its random variable



Meteorology # Climate
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e Dynamics: 1 trajectory vs. the “attractor”

e Statistics:
1 realization vs. its random variable

<

Main thread of various statistical modellings climate variables & evaluations:

What we need is the correct pdf or CDF (or at least properties)




Uncertainty vs. Variability vs. Bias



Uncertainty vs.
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Uncertainty vs.

Hyp.: We don’t have all the relevant
knowledge (e.g., predictors and/or
processes are not necessarily fully
fixed or known) =» the results are
impacted by this lack of knowledge
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Hyp.: We don’t have all the relevant
knowledge (e.g., predictors and/or
processes are not necessarily fully
fixed or known) =» the results are
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Variabilities, forcings, etc.

Some “wording”:

» Climate = Mean state + climate variability

» Climate variability = internal variability + external forcings

» External forcings = Natural forcings + anthropogenic forcings

> = Internal variability + Natural forcings



Inter-model variability vs. Internal variability

Stationary climate: lots of variations anyway!
(= mean state + internal variability)

Data: CNRM-CM5
™ Global temperature CNRM—-CMS5 piCeontrol

04

0.2

Anomalies (K)
0.0
T

-04 -02

: : : : : i
0 200 400 600 800
Years of simulation

Many internal variabilities:

» from global and multi-decadal (mostly from the ocean)

» toregional and inter-annual (mostly from the atmosphere)



Inter-model variability vs. Internal variability

Runl GCM2
Variable of 4
interest
e.g., temperature
(cg . p Runl GCM1
anomalies)

Time

» Single runs of 2 GCMs (one scenario only)

A This is a schematic view (i.e., not based on actual simulations)



Inter-model variability vs. Internal variability

Runl GCM2
Variable of
interest
(e.g., temperature Runl GCM1
: n
anomalies) Y

Time

» Multiple runs of 2 GCMs (one scenario only)

A This is a schematic view (i.e., not based on actual simulations)



Inter-model variability vs. Internal variability
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Inter-model variability vs. Internal variability
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. Mean trajectory GCM1
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Time

» Multiple runs of 2 GCMs (one scenario only)

v' Mean trajectories

A This is a schematic view (i.e., not based on actual simulations)



Inter-model variability vs. Internal variability
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v' Mean trajectories

A This is a schematic view (i.e., not based on actual simulations)



Inter-model variability vs. Internal variability

/ Internal variability of GCM2

Mean trajectory GCM2
Variable of t e
interest
e.g., temperature .
(e.g. mperatu Mean trajectory GCM1
anomalies)

¥—— Internal variability of GCM1

Time

» Multiple runs of 2 GCMs (one scenario only)
v' Mean trajectories
v’ Internal variabilities

A This is a schematic view (i.e., not based on actual simulations)



Inter-model variability vs. Internal variability
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Time

» Multiple runs of 2 GCMs (one scenario only)
v' Mean trajectories

+ Inter-model variabili
v' Internal variabilities R

A This is a schematic view (i.e., not based on actual simulations)



Inter-model variability vs. Internal variability

Variable of 4
interest

(e.g., temperature
anomalies)

”
-
_- /I SSP12.6

Time

» Multiple runs of GCMs & multiple scenarios

A This is a schematic view (i.e., not based on actual simulations)



Inter-model variability vs. Internal variability
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» Multiple runs of GCMs & multiple scenarios

A This is a schematic view (i.e., not based on actual simulations)



Inter-model variability vs. Internal variability
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» Multiple runs of GCMs & multiple scenarios

A This is a schematic view (i.e., not based on actual simulations)



Inter-model variability vs. Internal variability

Global surface temperature change relative to 1850-1900
°C SSP5-8.5

SSP3-7.0

SSP2-4.5

SSP1-2.6
SSP1-1.9

P

2000 2015 2050 2100

O » N W b O

» Multiple runs of GCMs & multiple scenarios

» How to quantify the contribution of the different variabilities/uncertainties?

A This time, this is based on actual CMIP6 simulations (adapted from AR6 IPCC, 2021)



Contributions of the different uncertainties...

Cascade of Uncertainty in CMIP5
Figure created by Ed Hawkins, 2014

2016-2035

RCPs

Models

Realisations

Global temperature change (relative to pre—industrial) [°C]



Contributions of the different uncertainties...

Cascade Of Uncertainty in CM|P5 s Sources of uncertainty in projected global mean temperature
Figure created by Ed Hawkins, 2014

—— Observations (3 datasets)
[ Internal variability
4 I Model spread

B RCP scenario spread
[Historical model spread

4.5

RCPs

Models

Realisations

Temperature change relative to 1986-2005 [K]

-1
ANOVA type 1960 1980 2000 20$gar 2040 2060 2080 2100

analyses Uncertainty in Global decadal mean ANN temperature
100

90
80

70
Global temperature change (relative to pre—industrial) [°C] 60
50
40 Source:
30 Hawkins
20 (2014)

10

For temperature:

» Short term: uncertainty on internal variability is predominant
» Medium term: uncertainty on modelling dominates

» Long term: uncertainty on scenario is the largest

Fraction of total variance [%)]

2040 2060 2080 2100
Year



Fraction of total variance [%]

Uncertainty

2020

... Different for each variable & region

Global decadal mean ANN temperature A Europe decadal mean DJF temperature

Fraction of total variance [%)]

0
2040 2060 2080 2100 2020 2040 2060 2080 2100
Year Year

Source: Figures from E. Hawkins, to find on his blog.

Fraction of total variance [%]

Uncertainty i

2020

xEurope decadal mean DJF precipitafiorn>

2040 2060 2080 2100
Year



A recent tool to characterize contributions

QUALYPSO : partitioning uncertainty components in an ensemble of climate projections (Evin et al., 2019)

(a) Climate projections Y;;(t)

14 4 RCP8.5
13 4 RCP4.5
— RCP2.6

- T T T
2000 2020 2040 2060 2080

» Provides: Uncertainty sources; individual climate response of each model:
uncertainties as a function of global warming level (e.g. in a +2°C world)

» Suits: Incomplete ensembles with multimodel simulation chains (GCM x
RCM x ...) for any kind of projections (weather, hydrology, ecology)

» Links: Package R “QuaLYPSO” available on CRAN




A recent tool to characterize contributions

QUALYPSO : partitioning uncertainty components in an ensemble of climate projections (Evin et al., 2019)

(a) Climate projections Y;;(t) (b) Climate responses ;(t)
14 - RCP8.5 14 RCP85
13 4 RCP4.5 13 RCP4.5
= RCP2.6 = RCP2.6

T T T T T T T T T T
2000 2020 2040 2060 2080 2000 2020 2040 2060 2080

\\ extraction of climate /
responses with a

cubic spline model

» Provides: Uncertainty sources; individual climate response of each model:
uncertainties as a function of global warming level (e.g. in a +2°C world)

» Suits: Incomplete ensembles with multimodel simulation chains (GCM x
RCM x ...) for any kind of projections (weather, hydrology, ecology)

» Links: Package R “QuaLYPSO” available on CRAN




A recent tool to characterize contributions

QUALYPSO : partitioning uncertainty components in an ensemble of climate projections (Evin et al., 2019)

(a) Climate projections Y;;(t) (b) Climate responses ;(t) (c) Climate change responses (D;‘]‘k(.l)
14 - RCP8.5 14 RCP8.5 4 RCP8.5
13 4 RCP4.5 13 RCP4.5 RCP4.5
= RCP2.6 = RCP2.6 == RCP2.6
2 3
2
14
T T T T T T T T T T 0===2 T T T T
2000 2020 2040 2060 2080 2000 2020 2040 2060 2080 2000 2020 2040 2060 2080
\\ extraction of climate /‘ \ climate change responses /
responses with a w.r.t. a reference period
cubic spline model (e.g. 1980-2010)

» Provides: Uncertainty sources; individual climate response of each model:
uncertainties as a function of global warming level (e.g. in a +2°C world)
» Suits: Incomplete ensembles with multimodel simulation chains (GCM x

RCM x ...) for any kind of projections (weather, hydrology, ecology)
» Links: Package R “QuaLYPSO” available on CRAN



A recent tool to characterize contributions

QUALYPSO : partitioning uncertainty components in an ensemble of climate projections (Evin et al., 2019)

(a) Climate projections Y;;(t) (b) Climate responses ;x(t) (c) Climate change responses (D;‘]‘k(t) (d) lllustration of the ANOVA for RCP main effects
14 - RCP8.5 14 RCP8.5 44 RCP8.5 3.0 4 RCP8.5
13 RCP4.5 13 RCP4.5 RCP4.5 25 RCP4.5 Y3
= RCP2.6 = RCP2.6 = RCP2.6 7] == RCP26
12 31 2.0 2
1" 1.5
10 104
= g 05
T T T T T T T T T T T T T T T 0.0+ T T T T T
2000 2020 2040 2060 2080 2000 2020 2040 2060 2080 2000 2020 2040 2060 2080 2000 2020 2040 2060 2080
\\ extraction of climate /‘ \ climate change responses / \ ANOVA applied to climate /
responses with a w.r.t. a reference period change responses: main
cubic spline model (e.g. 1980-2010) effects, uncertainties

4 = mean response in change from the whole
ensemble inter-modeles / inter-scenarios

» Provides: Uncertainty sources; individual climate response of each model: d v+ = individual off Fthe 3
o . ) . o d Y1, Y2 and y3 = individual effects of the
uncertainties as a function of global warming level (e.g. in a +2°C world) RCP scenarios wrt g (e.g., y3 => RCP8.5
» Suits: Incomplete ensembles with multimodel simulation chains (GCM x implies a T change of +1°C wrt p1)

RCM x ...) for any kind of projections (weather, hydrology, ecology)
» Links: Package R “QuaLYPSO” available on CRAN



A recent tool to characterize contributions

QUALYPSO : partitioning uncertainty components in an ensemble of climate projections (Evin et al., 2019)

Examples for seasonal changes (2071-2099 wrt 1981-2010) of precipitation and temperature in Europe

Temperature Precipitation

CONTRIBUTION (%)

UTION (%)

o 10 25 50 75 100 o 10 25 50 75 100

Source: Evin et al. (2021, ESD)
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Present in most components of the modelling chain...

Global Climate Models (GCM)

Regional Climate Models (RCM, "Dynamical doswnscaling")
Statistical Downscaling Models (SDM, including Mach. Learning)
Bias Correction (BC) methods

Impact models (hydrology, ecology, economy, etc.)
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Clouds / aerosol / ice / ...
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Uncertainty vs.

Global Climate Models (GCM)

Regional Climate Models (RCM, "Dynamical doswnscaling")

Variability vs. Bias
Present in most components of the modelling chain...

L For evaluation —
+ uncertainties

Statistical Downscaling Models (SDM, including Mach. Learning) 7 on references
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... & in most processes and/or statistical properties

Precipitation / Wind / (Temperature) /...
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Univariate distributions and basic properties
Multivariate dependencies
Temporal properties (persitence, reccurrence, etc.)

Extremes (return levels/period, HW, storms, etc.)
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Uncertainty vs.

Global Climate Models (GCM)

Regional Climate Models (RCM, "Dynamical doswnscaling")

Variability vs. Bias
Present in most components of the modelling chain...

L For evaluation —
+ uncertainties

Statistical Downscaling Models (SDM, including Mach. Learning) 7 on references

Bias Correction (BC) methods

Impact models (hydrology, ecology, economy, etc.)

-—
— For fit & evaluation

... & in most processes and/or statistical properties

Precipitation / Wind / (Temperature) /...

Circulation (SLP, Z500, jet, etc.) patterns

Clouds / aerosol / ice / ...

Etc.

>
>
>
>

Univariate distributions and basic properties
Multivariate dependencies
Temporal properties (persitence, reccurrence, etc.)

Extremes (return levels/period, HW, storms, etc.)

» Especially in a climate change context! (trends, non-stationarity, etc.)



Thank you...



